根据新定义的函数建立fk(x)与f(x)之间的关系,通过二者相等得出实数k满足的条件,利用导数或者函数函数的单调性求解函数的最值,进而求出k的范围,进一步得出所要的结果.
【解析】
由题意可得出k≥f(x)最大值,
由于f′(x)=-1+e-x,令f′(x)=0,e-x=1=e解出-x=0,即x=0,
当x>0时,f′(x)<0,f(x)单调递减,
当x<0时,f′(x)>0,f(x)单调递增.
故当x=0时,f(x)取到最大值f(0)=2-1=1.
故当k≥1时,恒有fk(x)=f(x).
因此K的最小值是1.
故选D.