满分5 > 高中数学试题 >

已知椭圆的两个焦点,过F1且与坐标轴不平行的直线l1与椭圆相交于M,N两点,如果...

已知椭圆的两个焦点manfen5.com 满分网,过F1且与坐标轴不平行的直线l1与椭圆相交于M,N两点,如果△MNF2的周长等于8.
(I)求椭圆的方程;
(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使manfen5.com 满分网恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.
(I)由题意知c=,4a=8,由此能得到椭圆的方程. (II)当直线l的斜率存在时,设其斜率为k,则l的方程为y=k(x-1)消去y得(4k2+1)x2-8k2x+4k2-4=0,设P(x1,y1),Q(x2,y2),由韦达定理结合向量的运算法则能够导出为定值. 【解析】 (I)由题意知c=,4a=8,∴a=2,b=1 ∴椭圆的方程为=1 (II)当直线l的斜率存在时,设其斜率为k,则l的方程为y=k(x-1)消去y得(4k2+1)x2-8k2x+4k2-4=0 设P(x1,y1),Q(x2,y2) 则由韦达定理得则 ∴=m2-m(x1+x2)+x1x2+y1y2 =m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1) = =要使上式为定值须,解得∴为定值当直线l的斜率不存在时由可得∴=综上所述当时,为定值
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求直线CB与平面PDC所成角的正弦值.

manfen5.com 满分网 查看答案
已知数列{an}满足manfen5.com 满分网(n∈N*),数列{bn}前n项和manfen5.com 满分网,数列{cn}满足cn=anbn
(1)求数列{an}和数列{bn}的通项公式;
(2)求数列{cn}的前n项和Tn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
设△ABC的内角A,B,C所对的边分别为a、b、c,且bcosC=a-manfen5.com 满分网
(1)求角B的大小;
(2)若b=1,求△ABC的周长l的取值范围.
查看答案
若函数manfen5.com 满分网满足:对于任意的x1,x2∈[0,1]都有|f(x1)-f(x2)|≤1恒成立,则a的取值范围是    查看答案
已知二次函数y=f(x)的图象为开口向下的抛物线,且对任意x∈R都有f(1-x)=f(1+x).若向量manfen5.com 满分网manfen5.com 满分网,则满足不等式manfen5.com 满分网的m的取值范围为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.