欲求数列的前n项和,必须求出在点(1,1)处的切线方程,须求出其斜率的值即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率即得直线方程进而得到切线与y轴交点的纵坐标.最后利用等比数列的求和公式计算,从而问题解决.
【解析】
y'=nxn-1-(n+1)xn,
曲线y=xn(1-x)在x=2处的切线的斜率为k=n2n-1-(n+1)2n
切点为(2,-2n),
所以切线方程为y+2n=k(x-2),
令x=0得an=(n+1)2n,
令bn=.
数列的前n项和为2+22+23++2n=2n+1-2.
故答案为:2n+1-2.