过PC上一点D作PO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角,说明点O在∠APB的平分线上,通过直角三角形PED、DOP,求出直线PC与平面PAB所成角的余弦值.
【解析】
过PC上一点D作PO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
设PE=1,∵∠OPE=30°∴OP==.
在直角△PED中,∠DPE=60°,PE=1,则PD=2.
在直角△DOP中,OP=,PD=2.则cos∠DPO==.
即直线PC与平面PAB所成角的余弦值是.
故选C.