满分5 > 高中数学试题 >

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车...

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可; (Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论. 【解析】 (Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为, 所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x元, 则租赁公司的月收益为, 整理得. 所以,当x=4050时,f(x)最大,最大值为f(4050)=307050, 即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(1+cotx)sin2x-2sin(x+manfen5.com 满分网)sin(x-manfen5.com 满分网).
(1)若tanα=2,求f(α);
(2)若x∈[manfen5.com 满分网manfen5.com 满分网],求f(x)的取值范围.
查看答案
不等式f(x)=manfen5.com 满分网的定义域为集合A,关于x的不等式manfen5.com 满分网R)的解集为B,求使A∩B=B的实数a取值范围.
查看答案
给出下列命题:
①函数y=cosmanfen5.com 满分网是奇函数;
②存在实数α,使得sinα+cosα=manfen5.com 满分网
③若α、β是第一象限角且α<β,则tanα<tanβ;
④x=manfen5.com 满分网是函数y=sinmanfen5.com 满分网的一条对称轴方程;
⑤函数y=sinmanfen5.com 满分网的图象关于点manfen5.com 满分网成中心对称图形.
其中命题正确的是    (填序号). 查看答案
设f(x)是定义在(-∞,+∞)上的奇函数,且在区间(0,+∞)上单调递增,若manfen5.com 满分网,三角形的内角A满足f(cosA)<0,则A的取值范围是    查看答案
把函数y=sinx(x∈R)的图象上所有的点向左平行移动manfen5.com 满分网个单位长度,再把所得图象上所有点的横坐标缩短到原来的manfen5.com 满分网倍(纵坐标不变),得到的图象所表示的函数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.