满分5 > 高中数学试题 >

已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f...

已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>-2,总存x∈(-2,t),满足manfen5.com 满分网,并确定这样的x的个数.
(Ⅰ)首先求出函数的导数,然后根据导数与函数单调区间的关系确定t的取值范围, (Ⅱ)运用函数的极小值进行证明, (Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定. (Ⅰ)【解析】 因为f′(x)=(2x-3)ex+(x2-3x+3)ex, 由f′(x)>0⇒x>1或x<0, 由f′(x)<0⇒0<x<1, ∴函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, ∵函数f(x)在[-2,t]上为单调函数, ∴-2<t≤0, (Ⅱ)证:因为函数f(x)在(-∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减, 所以f(x)在x=1处取得极小值e, 又f(-2)=13e-2<e, 所以f(x)在[2,+∞)上的最小值为f(-2), 从而当t>-2时,f(-2)<f(t), 即m<n, (Ⅲ)证:因为, ∴, 即为x2-x=, 令g(x)=x2-x-, 从而问题转化为证明方程g(x)==0在(-2,t)上有解并讨论解的个数, 因为g(-2)=6-(t-1)2=-, g(t)=t(t-1)-=, 所以当t>4或-2<t<1时,g(-2)•g(t)<0, 所以g(x)=0在(-2,t)上有解,且只有一解, 当1<t<4时,g(-2)>0且g(t)>0, 但由于g(0)=-<0, 所以g(x)=0在(-2,t)上有解,且有两解, 当t=1时,g(x)=x2-x=0, 解得x=0或1, 所以g(x)=0在(-2,t)上有且只有一解, 当t=4时,g(x)=x2-x-6=0, 所以g(x)=0在(-2,t)上也有且只有一解, 综上所述,对于任意的t>-2,总存在x∈(-2,t),满足, 且当t≥4或-2<t≤1时,有唯一的x适合题意, 当1<t<4时,有两个x适合题意.
复制答案
考点分析:
相关试题推荐
已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为manfen5.com 满分网,公比为manfen5.com 满分网的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立.
(1)当m=12时,求a2010
(2)若manfen5.com 满分网,试求m的值;
(3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由.
查看答案
要获得某项英语资格证书必须依次通过听力和笔试两项考试,只有听力成绩合格时,才可继续参加笔试的考试.已知听力和笔试各只允许有一次不考机会,两项成绩均合格方可获得证书.现某同学参加这项证书考试,根据以往模拟情况,听力考试成绩每次合格的概率均为manfen5.com 满分网,笔试考试成绩每次合格的概率均为manfen5.com 满分网,假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)求他恰好补考一次就获得证书的概率;
(3)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求参加考试次数ξ的分布列和期望值.
查看答案
已知圆manfen5.com 满分网内一定点A(1,-2),P,Q为圆上的两不同动点.
(1)若P,Q两点关于过定点A的直线l对称,求直线l的方程;
(2)若圆O2的圆心O2与点A关于直线x+3y=0对称,圆O2与圆O1交于M,N两点,且manfen5.com 满分网,求圆O2的方程.
查看答案
已知函数manfen5.com 满分网(其中ω为正常数,x∈R)的最小正周期为π.
(1)求ω的值;
(2)在△ABC中,若A<B,且manfen5.com 满分网,求manfen5.com 满分网
查看答案
解关于x的不等式|ax-1|>a+1(a>-1).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.