满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值 (1)求函数f(x)...

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围.
(1)解析式中有两个参数,故需要得到两个方程求参数,由于函数f(x)=ax3+bx2-3x在x=±1处取得极值,由极值存在的条件恰好可以得到两个关于参数的两个方程,由此解析式易求. (2)欲证对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4,可以求出函数在区间[-1,1]上的最值,若最大值减去最小值的差小于等于4,则问题得到证明,故问题转化为研究函数在区间[-1,1]上的单调性求最值的问题. (3)由于点A(1,m)(m≠-2),验证知此点不在函数图象上,可设出切点坐标M(x,y),然后用两种方式表示出斜率,建立关于切点横坐标的方程2x3-3x2+m+3=0,再借助函数的单调性与极值确定其有三个解的条件即可. 【解析】 (1)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,解得a=1,b=0. ∴f(x)=x3-3x (2)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1), 当-1<x<1时,f′(x)<0,故f(x)在区间[-1,1]上为减函数, fmax(x)=f(-1)=2,fmin(x)=f(1)=-2 ∵对于区间[-1,1]上任意两个自变量的值x1,x2, 都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)| |f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4 (3)f′(x)=3x2-3=3(x+1)(x-1), ∵曲线方程为y=x3-3x,∴点A(1,m)不在曲线上. 设切点为M(x,y),切线的斜率为(左边用导数求出,右边用斜率的两点式求出), 整理得2x3-3x2+m+3=0. ∵过点A(1,m)可作曲线的三条切线,故此方程有三个不同解,下研究方程解有三个时参数所满足的条件 设g(x)=2x3-3x2+m+3,则g′(x)=6x2-6x, 由g′(x)=0,得x=0或x=1. ∴g(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减. ∴函数g(x)=2x3-3x2+m+3的极值点为x=0,x=1 ∴关于x方程2x3-3x2+m+3=0有三个实根的充要条件是,解得-3<m<-2. 故所求的实数a的取值范围是-3<m<-2.
复制答案
考点分析:
相关试题推荐
知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
查看答案
已知直线y=-x+1与椭圆manfen5.com 满分网=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为manfen5.com 满分网,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈manfen5.com 满分网时,求椭圆的长轴长的最大值.
查看答案
甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜.你认为此游戏是否公平?请说明你的理由.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
查看答案
已知manfen5.com 满分网定义域为R.
(1)求f(x)的值域;
(2)在区间manfen5.com 满分网上,f(α)=3,求manfen5.com 满分网).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.