满分5 > 高中数学试题 >

如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=lo...

manfen5.com 满分网manfen5.com 满分网如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象.
(1)分别求出函数f(x)和g(x)的解析式;
(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.
(1)由题图1得,二次函数f(x)的顶点坐标可设函数的顶点式f(x)=a(x-1)2+2,又函数f(x)的图象过点(0,0),求出a,得f(x)的解析式.由题图2得,函数g(x)=loga(x+b)的图象过点(0,0)和(1,1),将点的坐标代入列出关于a,b的方程组,解得a,b.最后写出g(x)的解析式即可; (2)由(1)得y=g(f(x))=log2(-2x2+4x+1)是由y=log2t和t=-2x2+4x+1复合而成的函数,利用复合函数的单调性研究此函数的单调性,从而得出满足条件的m的取值范围. 【解析】 (1)由题图1得,二次函数f(x)的顶点坐标为(1,2), 故可设函数f(x)=a(x-1)2+2,又函数f(x)的图象过点(0,0),故a=-2, 整理得f(x)=-2x2+4x. 由题图2得,函数g(x)=loga(x+b)的图象过点(0,0)和(1,1), 故有∴ ∴g(x)=log2(x+1)(x>-1). (2)由(1)得y=g(f(x))=log2(-2x2+4x+1)是由y=log2t和t=-2x2+4x+1复合而成的函数, 而y=log2t在定义域上单调递增, 要使函数y=g(f(x))在区间[1,m)上单调递减, 必须t=-2x2+4x+1在区间[1,m)上单调递减,且有t>0恒成立. 由t=0得x=,又t的图象的对称轴为x=1. 所以满足条件的m的取值范围为1<m<.
复制答案
考点分析:
相关试题推荐
已知命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,使得x2+(a-1)x+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
查看答案
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,当x1,x2∈[0,3],且x1≠x2时,都有manfen5.com 满分网>0.则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为x=-6;
③函数y=f(x)在[-9,-6]上为增函数;
④方程f(x)=0在[-9,9]上有4个根.
其中正确命题的序号是    .(请将你认为是真命题的序号都填上) 查看答案
在2008年北京奥运会青岛奥帆赛举行之前,为确保赛事安全,青岛海事部门举行奥运安保海上安全演习.为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点C,D,在某天10:00观察到该航船在A处,此时测得∠ADC=30°,3分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,则船速为    千米/分钟.
manfen5.com 满分网 查看答案
曲线y=ex在点(2,e2)处的切线与坐标轴所围成的三角形的面积为     查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,且a,b,c成等差数列,sinA,sinB,sinC成等比数列,则三角形的形状是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.