满分5 > 高中数学试题 >

在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足a-2bsi...

在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足manfen5.com 满分网a-2bsinA=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=manfen5.com 满分网,c=2,求manfen5.com 满分网的值.
(Ⅰ)利用正弦定理化简已知的等式,整理后根据sinA不为0,求出sinB的值,由B为锐角,利用特殊角的三角函数值即可求出B的度数; (Ⅱ)由B的度数求出cosB的值,再由b与c的值,利用余弦定理列出关于a的方程,求出方程的解得到a的值,再利用余弦定理表示出cosA,将三边长代入求出cosA的值,然后利用平面向量的数量积运算法则化简所求的式子后,将各自的值代入即可求出值. 【解析】 (Ⅰ)由a-2bsinA=0, 根据正弦定理得:sinA-2sinBsinA=0,…(3分) ∵sinA≠0,∴sinB=,…(5分) 又B为锐角, 则B=;…(6分) (Ⅱ)由(Ⅰ)可知,B=, ∵b=,c=2, 根据余弦定理得:7=a2+4-4acos,…(8分) 整理得:a2-2a-3=0,由于a>0,解得:a=3,…(10分) ∴cosA===,…(11分) 则•=||•||cosA=cbcosA=2××=1.…(13分)
复制答案
考点分析:
相关试题推荐
已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.
(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是   
(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m,n的值分别为    查看答案
某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(万元)与机器运转时间x(年数,x∈N*)的关系为y=-x2+18x-25.则当每台机器运转    年时,年平均利润最大,最大值是    万元. 查看答案
设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB的长为manfen5.com 满分网,则实数m的值是    查看答案
某几何体的三视图如图所示,则这个几何体的体积是   
manfen5.com 满分网 查看答案
已知有若干辆汽车通过某一段公路,从中抽取200辆汽车进行测速分析,其时速的频率分布直方图如图所示,则时速在区间[60,70)上的汽车大约有    辆.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.