根据题意,依次分析4个命题:对于①,令y=2,有f(x+2)=f(x)+f(2),又由f(2)=0,则f(x+2)=f(x),由函数的周期性的定义可得①正确;对于②,令x=y=0,有f(0)=f(0)+f(0),可得f(0)=0,再令y=-x,有f(0)=f(x)+f(-x),即f(x)=-f(-x),由奇函数的定义可得②正确;对于③,由①可得f(x+2)=f(x),又由②可得f(x)=-f(-x),则有f(x+2)=-f(-x),由函数的对称性可得③正确;对于④,由③可得④错误;综合可得答案.
【解析】
根据题意,依次分析4个命题:
对于①,在f(x+y)=f(x)+f(y)中,令y=2,有f(x+2)=f(x)+f(2),又由f(2)=0,则f(x+2)=f(x),可得f(x)是周期函数,故①正确;
对于②,在f(x+y)=f(x)+f(y)中,令x=y=0,有f(0)=f(0)+f(0),可得f(0)=0,再令y=-x,有f(0)=f(x)+f(-x),即f(x)=-f(-x),可得f(x)是奇函数,故②正确;
对于③,由①可得f(x+2)=f(x),又由②可得f(x)=-f(-x),则有f(x+2)=-f(-x),即f(x)关于点(1,0)对称,③正确;
对于④,由③可得,f(x)关于点(1,0)对称,则f(x)不会关于直线x=1对称,④错误;
故答案为①②③.