满分5 > 高中数学试题 >

如图,l1、l2是通过某城市开发区中心O的两条南北和东西走向的街道,连接M、N两...

如图,l1、l2是通过某城市开发区中心O的两条南北和东西走向的街道,连接M、N两地之间的铁路线是圆心在l2上的一段圆弧.若点M在点O正北方向,且|MO|=3km,点N到l1、l2的距离分别为4km和5km.
(1)建立适当坐标系,求铁路线所在圆弧的方程;
(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4km,并且铁路线上任意一点到校址的距离不能少于manfen5.com 满分网,求该校址距点O的最近距离(注:校址视为一个点).

manfen5.com 满分网
(1)建立坐标系,利用圆心在弦的垂直平分线上求圆心坐标,再求半径,进而写出圆的方程. (2)据条件列出不等式,运用函数单调性解决恒成立问题. 【解析】 (1)分别以l2、l1为x轴,y轴建立如图坐标系. 据题意得M(0,3),N(4,5),∴, MN中点为(2,4), ∴线段MN的垂直平分线方程为:y-4=-2(x-2)), 故圆心A的坐标为(4,0), 半径,(5分) ∴弧的方程为:(x-4)2+y2=25(0≤x≤4,y≥3).(8分) (2)设校址选在B(a,0)(a>4), 则,对0≤x≤4恒成立. 即 ,对0≤x≤4恒成立. 整理得:(8-2a)x+a2-17≥0,对0≤x≤4恒成立(﹡).(10分) 令f(x)=(8-2a)x+a2-17. ∵a>4,∴8-2a<0, ∴f(x)在[0,4]上为减函数,(12分) ∴要使(﹡)恒成立,当且仅当,即, 解得a≥5,(14分) 即校址选在距O最近5km的地方.(16分)
复制答案
考点分析:
相关试题推荐
若椭圆manfen5.com 满分网过点(-3,2)离心率为manfen5.com 满分网,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求manfen5.com 满分网的最大值与最小值.
查看答案
在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE,M是AB的中点.建立适当的空间直角坐标系,解决下列问题:
(1)求证:CM⊥EM;
(2)求CM与平面CDE所成角的大小.

manfen5.com 满分网 查看答案
如图,设椭圆manfen5.com 满分网的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.
(1)若点P在直线manfen5.com 满分网上,求椭圆的离心率;
(2)在(1)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.

manfen5.com 满分网 查看答案
椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,一条直线l经过点F1与椭圆交于A,B两点.
(1)求△ABF2的周长;
(2)若l的倾斜角为manfen5.com 满分网,求△ABF2的面积.
查看答案
如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PA⊥平面ABCD,PA=AB=2,且E,F分别是BC,CD的中点.
(1)求证:平面PEF⊥平面PAC;
(2)求三棱锥P-EFC的体积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.