已知函数
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x | | 0.1 | 0.2 | 0.5 | 0.8 | 1 | 1.2 | 1.5 | 1.8 | 2 | 4 | 6 | … |
y | | 0.396 | 0.769 | 1.6 | 1.951 | 2 | 1.967 | 1.846 | 1.698 | 1.6 | 0.941 | 0.649 | … |
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式
.
考点分析:
相关试题推荐
某汽车生产企业,上年度生产汽车的投入成本为8万元/辆,出厂价为10万元/辆,年销售量为12万辆.本年度为节能减排,对产品进行升级换代.若每辆车投入成本增加的比例为
,则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.5x.
(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)当投入成本增加的比例x为何值时,本年度比上年度利润增加最多?最多为多少?
查看答案
已知全集U=R,集合A={y|y=3-|x|,x∈R,且x≠0},集合B是函数
的定义域.
(Ⅰ)求集合A、B(结果用区间表示);
(Ⅱ)求A∩(C
UB).
查看答案
设集合E={x|x是小于6的正整数},F={x|(x-1)(x-2)=0},G={a,a
2+1},
(Ⅰ)求:E∩F,E∪F.
(Ⅱ)若F⊆G,且G⊆F,求实数a的值.
查看答案
对于定义在R上的函数f(x),有如下四个命题:
①若f(0)=0,则函数f(x)是奇函数;
②若f(-4)≠f(4),则函数f(x)不是偶函数;
③若f(0)<f(4),则函数f(x)是R上的增函数;
④若f(0)<f(4),则函数f(x)不是R上的减函数.
其中正确的命题有
.(写出你认为正确的所有命题的序号)
查看答案
已知f(x)为偶函数,当x>0时,f(x)=x
2+x,则x<0时,f(x)=
.
查看答案