满分5 > 高中数学试题 >

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程...

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )
A.4
B.-manfen5.com 满分网
C.2
D.-manfen5.com 满分网
欲求曲线y=f(x)在点(1,f(1))处切线的斜率,即求f′(1),先求出f′(x),然后根据曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1求出g′(1),从而得到f′(x)的解析式,即可求出所求. 【解析】 f′(x)=g′(x)+2x. ∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1, ∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4, ∴y=f(x)在点(1,f(1))处切线斜率为4. 故选A.
复制答案
考点分析:
相关试题推荐
已知f(x)=manfen5.com 满分网,数列{an}为首项是1,以f(1)为公比的等比数列;数列{bn}中b1=manfen5.com 满分网,且bn+1=f(bn),
(1)求数列{an}和{bn}的通项公式
(2)令manfen5.com 满分网,{cn}的前n项和为Tn,证明:对∀n∈N+有1≤Tn<4.
查看答案
已知f(x)对一切实数x,y都有f(x+y)=f(x)+f(y),f(1)=2,当x>0时,f(x)<0
(1)证明f(x)为奇函数;
(2)证明f(x)为R上的减函数;
(3)解不等式f(x-1)-f(1-2x-x2)<4.
查看答案
为了立一块广告牌,要制造一个三角形的支架,三角形支架形状如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米为了广告牌稳固,要求AC的长度越短越好,求AC最短为多少米?且当AC最短时,BC长度为多少米?

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=manfen5.com 满分网,f(manfen5.com 满分网)=-manfen5.com 满分网,求sinA.
查看答案
己知f(x)=(m2+m)manfen5.com 满分网,当m取什么值时
(1)f(x)是正比例函数;
(2)f(x)是反比例函数;
(3)f(x)是幂函数.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.