(Ⅰ)连接AC交BD于O,连接EO,△A1AC中利用中位线,得EO∥A1C.再结合线面平行的判定定理,可得A1C∥平面BDE;
(II)根据正方体的侧棱垂直于底面,结合线面垂直的定义,得到AA1⊥BD.再结合正方形的对角线互相垂直,得到AC⊥BD,从而得到BD⊥平面A1AC,最后利用面面垂直的判定定理,可以证出平面A1AC⊥平面BDE.
证明:(Ⅰ)连接AC交BD于O,连接EO,
∵E为AA1的中点,O为AC的中点
∴EO为△A1AC的中位线
∴EO∥A1C
又∵EO⊂平面BDE,A1C⊄平面BDE
∴A1C∥平面BDE;…(6分)
(Ⅱ)∵AA1⊥平面ABCD,BD⊂平面ABCD
∴AA1⊥BD
又∵四边形ABCD是正方形
∴AC⊥BD,
∵AA1∩AC=A,AA1、AC⊂平面A1AC
∴BD⊥平面A1AC
又∵BD⊂平面BDE
∴平面A1AC⊥平面BDE.…(12分)