满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(...

已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],求m和n的值.
(Ⅰ)根据函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0,可设f(x)=a(x+1)2=ax2+2ax+a,与函数f(x)=ax2+bx+1比较,即可得出f(x)的解析式; (Ⅱ)先确定g(x)=(x+1)2-1的值域,根据g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],确定m≥-1,从而可得g(x)=f(x)-1在区间[m,n]上单调增,由此可求m和n的值. 【解析】 (Ⅰ)由题意,函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0. ∴可设f(x)=a(x+1)2=ax2+2ax+a 与函数f(x)=ax2+bx+1比较可得a=1 ∴f(x)的解析式为f(x)=(x+1)2; (Ⅱ)g(x)=(x+1)2-1≥-1 ∵g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n], ∴m≥-1 ∴g(x)=f(x)-1在区间[m,n]上单调增 ∴ ∴m,n是方程(x+1)2-1=x的两根 即m,n是方程x2+x=0的两根 ∵m<n ∴m=-1,n=0.
复制答案
考点分析:
相关试题推荐
设函数f(x)=manfen5.com 满分网是奇函数(a,b,c都是整数),且f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论.
查看答案
设集合manfen5.com 满分网,B={x|x2-3mx+2m2-m-1<0}.
(1)当x∈Z时,求A的非空真子集的个数.
(2)若B=φ,求m的取值范围.
(3)若A⊇B,求m的取值范围.
查看答案
manfen5.com 满分网,求函数f(x)=-4x-2x+1+3的值域.
查看答案
定义:若存在常数k,使得对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|≤k|x1-x2|成立,则称函数f(x)在定义域D上满足利普希茨条件.若函数manfen5.com 满分网满足利普希茨条件,则常数k的最小值为    查看答案
设f(x)=3ax-2a+1,a为常数.若存在x∈(0,1),使得f(x)=0,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.