(Ⅰ)先通过余弦定理求出a,b的关系式;再通过正弦定理及三角形的面积求出a,b的另一关系式,最后联立方程求出a,b的值.
(Ⅱ)通过C=π-(A+B)及二倍角公式及sinC+sin(B-A)=2sin2A,求出∴sinBcosA=2sinAcosA.当cosA=0时求出a,b的值进而通过absinC求出三角形的面积;当cosA≠0时,由正弦定理得b=2a,联立方程解得a,b的值进而通过absinC求出三角形的面积.
【解析】
(Ⅰ)∵c=2,C=,c2=a2+b2-2abcosC
∴a2+b2-ab=4,
又∵△ABC的面积等于,
∴,
∴ab=4
联立方程组,解得a=2,b=2
(Ⅱ)∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A=4sinAcosA,
∴sinBcosA=2sinAcosA
当cosA=0时,,,,,求得此时
当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,
联立方程组解得,.
所以△ABC的面积
综上知△ABC的面积