如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA∥平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
考点分析:
相关试题推荐
设f(x)是定义在R上的函数,对m,n∈R恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1;
(2)求证:当x∈R时,恒有f(x)>0;
(3)求证:f(x)在R上是减函数.
查看答案
已知二次函数f(x)的图象过A(-1,0),B(3,0),C(1,-8).
(1)求f(x)的解析式;
(2)求不等式f(x)≥0的解集.
(3)将f(x)的图象向右平移2个单位,求所得图象的函数解析式g(x).
查看答案
汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费用+年均维修费),设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前x年的总维修费y满足y=ax
2+bx,已知第一年的总维修费为1000元,前两年的总维修费为3000元,则这种汽车的最佳使用年限为
年.
查看答案
过双曲线
的右焦点F和虚轴端点B作一条直线,若右顶点A到直线FB的距离等于
,则双曲线的离心率e=
.
查看答案
若关于x的方程3tx
2+(3-7t)x+4=0的两实根α,β满足0<α<1<β<2,则实数t的取值范围是
.
查看答案