满分5 > 高中数学试题 >

若不等式对于任意正整数n恒成立,则实数a的取值范围为 .

若不等式manfen5.com 满分网对于任意正整数n恒成立,则实数a的取值范围为   
要使不等式对于任意正整数n恒成立,即要<2,为两项-a-和a+ 求出的最大值要小于2,列出不等式求出a的范围即可. 【解析】 由得:<2, 而f(n)=, 当n取奇数时,f(n)=-a-;当n取偶数时,f(n)=a+. 所以f(n)只有两个值,当-a-<a+时,f(n)max=a+,即a+<2,得到a<; 当-a-≥a+时,即-a-≤2,得a≥-2, 所以a的取值范围为-2≤a<. 故答案为:-2≤a<
复制答案
考点分析:
相关试题推荐
在等比数列{an}中,若a1+a2+a3+a4=manfen5.com 满分网,a2a3=-manfen5.com 满分网,则manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网=    查看答案
已知数列{bn}的前n项和Sn满足bn=2-2Sn,则数列{bn}的通项公式bn=    查看答案
给出定义:若manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)定义域是R,值域是manfen5.com 满分网
②函数y=f(x)的图象关于直线manfen5.com 满分网对称;
③函数y=f(x)是周期函数,最小正周期是1;
④函数y=f(x)在manfen5.com 满分网上是增函数.
则其中真命题是( )
A.①②③
B.②③④
C.①②④
D.①③④
查看答案
已知函数f(x)=ax2+2ln(1-x)(a∈R),且f(x)在[-3,-2)上是增函数,则实数a的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是( )
A.0≤m≤4
B.0≤m≤2
C.m≤0
D.m≤0或m≥4
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.