本题综合考查等差数列的概念和等差数列的通项公式、等差数列的证明证明、直线和园、圆的方程等相关知识.
(1)根据两圆的交点将圆C2的周长平分可知圆C2的圆心在交点A、B的连线上,由此可得|C1C2|2=r12-r22,将二圆化为标注方程代入即得an+1和an的递推关系,由此可证数列{an}是等差数列;
(2)在(1)的基础上易得数列{an}的通项公式,以此表示圆C1的半径是关于n的二次方程,根据其最小值时的n值,可以得到圆C1的方程.
【解析】
(1)由已知,圆C1:x2+y2-2anx+2an+1y-1=0的圆心为
(an,-an+1),半径为,(2分)
圆C2:x2+y2+2x+2y-2=0的圆心为(-1,-1),
半径为r2=2,(3分)
由题意:|C1C2|2+r22=r12,(5分)
则(an+1)2+(an=1-1)2+4=an2+an+12+1,
则,所以数列{an}是等差数列;(7分)
(2)∵a1=-3,则,(9分)
则•
=,(12分)
∵n∈N+,则当n=2时,r1可取得最小值,(13分)
此时,圆C1的方程是:x2+y2+x+4y-1=0.(14分)