满分5 > 高中数学试题 >

已知函数f(x)=x+,h(x)=. (Ⅰ)设函数F(x)=18f(x)-x2[...

已知函数f(x)=manfen5.com 满分网x+manfen5.com 满分网,h(x)=manfen5.com 满分网
(Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程lg[manfen5.com 满分网f(x-1)-manfen5.com 满分网]=2lgh(a-x)-2lgh(4-x);
(Ⅲ)设n∈Nn,证明:f(n)h(n)-[h(1)+h(2)+…+h(n)]≥manfen5.com 满分网
(Ⅰ)首先求出F(x)的解析式,求导,令导数大于0和小于0,分别求出单调增区间和减区间,从而可求极值. (Ⅱ)将方程转化为lg(x-1)+2lg=2lg,利用对数的运算法则,注意到真数大于0,转化为等价的不等式,分离参数a,求解即可. (Ⅲ)由已知得h(1)+h(2)+…+h(n)= 故原不等式转化为f(n)h(n)-=≥ 注意到等式右侧为数列{bn}:bn=和的形式,将等式的左侧也看作一个数列的前n项和的形式, 求出通项.问题转化为证明项>项的问题.可用做差法直接求解. 【解析】 (Ⅰ)F(x)=18f(x)-x2[h(x)]2=-x3+12x+9(x≥0) 所以F′(x)=-3x2+12=0,x=±2 且x∈(0,2)时,F′(x)>0,当x∈(2,+∞)时,F′(x)<0 所以F(x)在(0,2)上单调递增,在(2,+∞)上单调递减. 故x=2时,F(x)有极大值,且F(2)=-8+24+9=25 (Ⅱ)原方程变形为lg(x-1)+2lg=2lg ⇔⇔ (1)当1<a<4时,原方程有一解x=3- (2)当4<a<5时,原方程有两解x=3± (3)当a=5时,原方程有一解x=3 (4)当a≤1或a>5时,原方程无解. (Ⅲ)由已知得h(1)+h(2)+…+h(n)= f(n)h(n)-= 从而a1=s1=1 当k≥2时,an=sn-sn-1= 又= = =>0 即对任意的k≥2,有 又因为a1=1= 所以a1+a2+…+an≥ 则sn≥h(1)+h(2)+…+h(n),故原不等式成立.
复制答案
考点分析:
相关试题推荐
定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),则
(1)求f(0);         
(2)证明:f(x)为奇函数;
(3)若f+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
查看答案
已知函数y=f(x)=manfen5.com 满分网(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N,且f(1)<manfen5.com 满分网
(1)试求函数f(x)的解析式;
(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.
查看答案
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式manfen5.com 满分网,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
查看答案
定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=manfen5.com 满分网.求f(x)在[-2,2]上的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.