满分5 > 高中数学试题 >

已知集合是满足下列性质的函数f(x)的全体:在定义域D内存在x,使得f(x+1)...

已知集合是满足下列性质的函数f(x)的全体:在定义域D内存在x,使得f(x+1)=f(x)+f(1)成立.
(1)函数manfen5.com 满分网是否属于集合M?说明理由;
(2)若函数f(x)=kx+b属于集合M,试求实数k和b的取值范围;
(3)设函数manfen5.com 满分网属于集合M,求实数a的取值范围.
(1)做出所给的函数的定义域,假设这个函数属于集合,则得到方程x2+x+1=0,因为此方程无实数解,得到不存在x使得等式成立,所以函数. (2)做出函数的定义域R,根据f(x)=kx+b∈M,则存在实数x,使得k(x+1)+b=kx+b+k+b,解得b=0,得到实数k和b的取得范围是k∈R,b=0 (3)根据所给的函数符合集合的条件,写出符合条件的关系式,得到一个关于自变量的一元二次方程,根据有解得到判别式大于0,得到结果. 【解析】 (1)根据题意得到D=(-∞,0)∪(0,+∞),若, 则存在非零实数x,使得,…(2分) 即x2+x+1=0,…(3分) 因为此方程无实数解,所以函数.…(4分) (2)D=R,由f(x)=kx+b∈M,存在实数x,使得k(x+1)+b=kx+b+k+b,…(6分) 解得b=0,…(7分) 所以,实数k和b的取得范围是k∈R,b=0.…(8分) (3)由题意,a>0,D=R.由,存在实数x, 使得,…(10分) 所以,, 化简得(a2-2a)x2+2a2x+2a2-2a=0,…(12分) 当a=2时,,符合题意.…(13分) 当a>0且a≠2时,由△≥0得4a4-8(a2-2a)(a2-a)≥0, 化简得a2-6a+4≤0, 解得.…(15分) 综上,实数a的取值范围是.…(16分)
复制答案
考点分析:
相关试题推荐
某城市出租车,乘客上车后,行驶3km内收费都是10元,之后每行驶1km收费2元,超过15km,每行驶1km收费为3元(假设途中一路顺利,没有停车等候,).若乘客需要行驶20km,求
(I)付费总数y与行驶路程x收费之间的函数关系式;
(II)当出租车行驶了15km后,乘客是中途换乘一辆出租车还是继续乘坐这辆出租车行驶完余下的5km路程,哪一种方式更便宜?”
查看答案
已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.
(Ⅰ)求f(x)的解析式,并画出的f(x)图象;
(Ⅱ)设g(x)=f(x)-k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ) 确定实数a的值,使f(x)为奇函数;
(Ⅱ) 当f(x)为奇函数时,若manfen5.com 满分网,求x的取值范围.
查看答案
已知函数f(x)=2x+manfen5.com 满分网,且f(1)=1   
(1)求a的值;
(2)判断f(x)的奇偶性;
(3)函数f(x)在(1,+∞)上是增函数还是减函数?并证明.
查看答案
设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求∁U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.