满分5 > 高中数学试题 >

已知:椭圆(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为,原点到...

已知:椭圆manfen5.com 满分网(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为manfen5.com 满分网,原点到该直线的距离为manfen5.com 满分网
(1)求椭圆的方程;
(2)斜率大于零的直线过D(-1,0)与椭圆交于E,F两点,若manfen5.com 满分网,求直线EF的方程;
(3)是否存在实数k,直线y=kx+2交椭圆于P,Q两点,以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由.
(1)利用两点连线的斜率公式及点到直线的距离公式列出椭圆的三个参数a,b,c的关系,通过解方程求出a,b,c的值,写出椭圆的方程. (2)设出直线方程,将直线方程与椭圆方程联立得到关于y的二次方程,利用根与系数的关系及已知条件中的向量关系找到有关直线方程中的待定系数满足的等式,解方程求出直线的方程. (3)将条件以PQ为直径的圆过点D(-1,0)转化为PD⊥QD,设出直线的方程将直线方程与椭圆方程联立,利用向量垂直的充要条件列出等式,求出直线的斜率. 【解析】 (1)由,, 得,b=1, 所以椭圆方程是: (2)设EF:x=my-1(m>0) 代入,得(m2+3)y2-2my-2=0, 设E(x1,y1),F(x2,y2), 由, 得y1=-2y2. 由, 得, ∴m=1,m=-1(舍去), 直线EF的方程为:x=y-1即x-y+1=0 (3)将y=kx+2代入, 得(3k2+1)x2+12kx+9=0(*) 记P(x1,y1),Q(x2,y2), ∵PQ为直径的圆过D(-1,0), 则PD⊥QD, 即(x1+1,y1)•(x2+1,y2)=(x1+1)(x2+1)+y1y2=0, 又y1=kx1+2,y2=kx2+2, 得. 解得, 此时(*)方程△>0, ∴存在,满足题设条件.
复制答案
考点分析:
相关试题推荐
已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求数列{an}的通项公式;
(II)设数列{bn}满足manfen5.com 满分网,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
查看答案
已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,求t的值.
查看答案
某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件.但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).若该企业所生产的产品全部销售.
(1)求该企业一年的利润L(x)与出厂价x的函数关系式;
(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.
查看答案
定义域[-1,1]的奇函数f(x)满足f(x)=f(x-2),且当x∈(0,1)时,manfen5.com 满分网.   
(1)求f(x)在[-1,1]上的解析式;
(2)求函数f(x)的值域.
查看答案
已知集合A={x|x≤-2或x≥7},集合manfen5.com 满分网,集合C={x|m+1≤x≤2m-1}.
(1)求A∩B;
(2)若A∪C=A,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.