满分5 > 高中数学试题 >

设函数f(x)=x2-2a|x|(a>0). (1)判断函数f(x)的奇偶性,并...

设函数f(x)=x2-2a|x|(a>0).
(1)判断函数f(x)的奇偶性,并写出x>0时f(x)的单调增区间;
(2)若方程f(x)=-1有解,求实数a的取值范围.
(1)根据绝对值的意义判断出f(x)的奇偶性,再利用偶函数的图象关于y轴对称,求出函数在(0,+∞)上的单调区间, (2)只要求出当x>0时,函数f(x)=x2-2ax(a>0)最小值进而利用f(x)min≤-1解答此题. 【解析】 (1)由题意,函数f(x)=x2-2a|x|(a>0)的定义域D=R,对于任意的x∈D,恒有f(-x)=x2-2ax=f(x), 所以函数f(x)是偶函数.(3分) 当x>0时,函数f(x)=x2-2ax(a>0) 且[a,+∞)⊂(0,+∞),所以此时函数f(x)的单调递增区间是[a,+∞)(3分) (2)由(1)得函数f(x)是偶函数,所以我们只要求出x>0时f(x)的最小值即可,当x>0时,f(x)=(x-a)2-a2(2分)所以f(x)min=-a2(2分) 只须-a2≤-1,即a≥1或a≤-(12分) 由于a>0,所以a≥1时,方程f(x)=-1有解.(2分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)是定义在实数集R上的奇函数,当x>0时,f(x)=ax+lnx,其中a∈R.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间(-∞,-1)上单调减少,求a的取值范围;
(3)试证明对∀a∈R,存在ξ∈(1,e),使f′(ξ)=manfen5.com 满分网
查看答案

如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E.若manfen5.com 满分网,∠APB=30°,则AE=   
manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知直线l的参数方程为manfen5.com 满分网(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为    查看答案
在实数的原有运算法则中,定义新运算aⓧb=a-2b,则|xⓧ(1-x)|+|(1-x)ⓧx|>3的解集为    查看答案
给出下列命题:
①在△ABC中,若A<B,则sinA<sinB;
②将函数manfen5.com 满分网图象向右平移manfen5.com 满分网个单位,得到函数y=sin2x的图象;
③在△ABC中,若AB=2,AC=3,∠ABC=60°,则△ABC必为锐角三角形;
④在同一坐标系中,函数y=sinx的图象和函数manfen5.com 满分网的图象有三个公共点.
其中真命题是    .(填出所有正确命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.