满分5 > 高中数学试题 >

已知函数f(x)=2sinxcosx+2cos2x-1(x∈R) (Ⅰ)求函数f...

已知函数f(x)=2manfen5.com 满分网sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函数f(x)的最小正周期及在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若f(x)=manfen5.com 满分网,x∈[manfen5.com 满分网manfen5.com 满分网],求cos2x的值.
先将原函数化简为y=Asin(ωx+φ)+b的形式 (1)根据周期等于2π除以ω可得答案,又根据函数图象和性质可得在区间[0,]上的最值. (2)将x代入化简后的函数解析式可得到sin(2x+)=,再根据x的范围可求出cos(2x+)的值, 最后由cos2x=cos(2x+)可得答案. 【解析】 (1)由f(x)=2sinxcosx+2cos2x-1,得 f(x)=(2sinxcosx)+(2cos2x)-1)=sin2x+cos2x=2sin(2x+) 所以函数f(x)的最小正周期为π. 因为f(x)=2sin(2x+)在区间[0,]上为增函数,在区间[,]上为减函数, 又f(0)=1,f()=2,f()=-1,所以函数f(x)在区间[0,]上的最大值为2,最小值为-1. (Ⅱ)由(1)可知f(x)=2sin(2x+) 又因为f(x)=,所以sin(2x+)= 由x∈[,],得2x+∈[,] 从而cos(2x+)=-=-. 所以 cos2x=cos[(2x+)-]=cos(2x+)cos+sin(2x+)sin=.
复制答案
考点分析:
相关试题推荐
设函数f(x)=x2-2a|x|(a>0).
(1)判断函数f(x)的奇偶性,并写出x>0时f(x)的单调增区间;
(2)若方程f(x)=-1有解,求实数a的取值范围.
查看答案
已知函数f(x)是定义在实数集R上的奇函数,当x>0时,f(x)=ax+lnx,其中a∈R.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间(-∞,-1)上单调减少,求a的取值范围;
(3)试证明对∀a∈R,存在ξ∈(1,e),使f′(ξ)=manfen5.com 满分网
查看答案

如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E.若manfen5.com 满分网,∠APB=30°,则AE=   
manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知直线l的参数方程为manfen5.com 满分网(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为    查看答案
在实数的原有运算法则中,定义新运算aⓧb=a-2b,则|xⓧ(1-x)|+|(1-x)ⓧx|>3的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.