满分5 > 高中数学试题 >

在△ABC中,A、B、C的对边分别为a、b、c,已知a+b=5,c=,且 (Ⅰ)...

在△ABC中,A、B、C的对边分别为a、b、c,已知a+b=5,c=manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求角C的大小;
(Ⅱ)求△ABC的面积.
(Ⅰ)把已知的等式左边第一项先利用诱导公式化简,再利用二倍角的余弦函数公式化简,第二项利用二倍角的余弦函数公式化简,可得出关于cosC的方程,求出方程的解得到cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数; (Ⅱ)利用余弦定理得到c2=a2+b2-2abcosC,再利用完全平方公式变形后,将c及a+b的值代入,求出ab的值,再由cosC的值,利用同角三角函数间的基本关系求出sinC的值,由ab,sinC的值,利用三角形的面积公式即可求出三角形ABC的面积. 【解析】 (Ⅰ)∵cos=cos(-)=-sin,cos2C=2cos2C-1, ∴4cos2()+cos2C=4sin2+cos2C=2(1-cosC)+2cos2C-1=, 整理得:(2cosC-1)2=0,可得cosC=, 又C为三角形的内角, 则C=; (Ⅱ)∵a+b=5,c=,cosC=, ∴由余弦定理得:c2=7=a2+b2-2abcosC=(a+b)2-3ab=25-3ab, ∴ab=6, 又cosC=,∴sinC==, 则△ABC的面积S=absinC=×6×=.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网=(3,2),manfen5.com 满分网=(-1,2),manfen5.com 满分网=(4,1).
(Ⅰ)求满足manfen5.com 满分网=xmanfen5.com 满分网+ymanfen5.com 满分网的实数x,y的值;
(Ⅱ)若(manfen5.com 满分网+kmanfen5.com 满分网)⊥(2manfen5.com 满分网-manfen5.com 满分网),求实数k的值.
查看答案
已知命题p:函数y=log0.5(x2+2x+a)的定义域为R,命题q:函数y=(manfen5.com 满分网x是减函数,若p或q为真命题,p且q为假命题,求实数a的取值范围.
查看答案
设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(manfen5.com 满分网x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是    查看答案
在R上定义运算△:x△y=x(1-y) 若不等式(x-a)△(x+a)<1,对任意实数x恒成立,则实数a的取值范围是    查看答案
在等腰直角三角形ABC中,∠A=manfen5.com 满分网,AB=6,E为AB的中点,manfen5.com 满分网=3manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网=_______查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.