满分5 > 高中数学试题 >

如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,...

manfen5.com 满分网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(Ⅲ)当二面角B-PC-D的大小为manfen5.com 满分网时,求PC与底面ABCD所成角的正切值.
(Ⅰ)要证:BD⊥FG,先证BD⊥平面PAC即可. (Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,FG∥平面PBD内的一条直线即可. (Ⅲ)当二面角B-PC-D的大小为时,求PC与底面ABCD所成角的正切值. 只要作出二面角的平面角,解三角形即可求出结果. 这三个问题可以利用空间直角坐标系,解答(Ⅰ)求数量积即可. (Ⅱ)设才点的坐标,向量共线即可解答. (Ⅲ)利用向量数量积求解法向量,然后转化求出PC与底面ABCD所成角的正切值. 证明:(Ⅰ)∵PA⊥面ABCD,四边形ABCD是正方形,其对角线BD,AC交于点E, ∴PA⊥BD,AC⊥BD, ∴BD⊥平面PAC, ∵FG⊂平面PAC, ∴BD⊥FG(5分) 解(Ⅱ):当G为EC中点,即AG=AC时,FG∥平面PBD,(7分) 理由如下: 连接PE,由F为PC中点,G为EC中点,知FG∥PE, 而FGË平面PBD,PE⊂平面PBD, 故FG∥平面PBD.(9分) 解(Ⅲ):作BH^PC于H,连接DH, ∵PA⊥面ABCD,四边形ABCD是正方形, ∴PB=PD, 又∵BC=DC,PC=PC, ∴△PCB≌△PCD, ∴DH⊥PC,且DH=BH, ∴ÐBHD就是二面角B-PC-D的平面角,(11分) 即ÐBHD=, ∵PA⊥面ABCD,∴ÐPCA就是PC与底面ABCD所成的角(12分) 连接EH,则EH⊥BD,ÐBHE=,EH⊥PC, ∴tanÐBHE=,而BE=EC, ∴,∴sinÐPCA=,∴tanÐPCA=, ∴PC与底面ABCD所成角的正切值是(14分) 或用向量方法: 【解析】 以A为原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系如图所示,设正方形ABCD的边长为1,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,a)(a>0),E(),F(),G(m,m,0)(0<m<)(2分) (Ⅰ)=(-1,1,0),=(),×=-m++m-+0=0, ∴BD⊥FG(5分) (Ⅱ)要使FG∥平面PBD,只需FG∥EP,而=(),由=l可得, 解得l=1,m=,(7分) ∴G(,,0),∴, 故当AG=AC时,FG∥平面PBD(9分) (Ⅲ)设平面PBC的一个法向量为=(x,y,z), 则,而,, ∴,取z=1,得=(a,0,1),同理可得平面PDC的一个法向量为=(0,a,1), 设,所成的角为q,则|cosq|=|cos|=,即=,∴,∴a=1(12分) ∵PA⊥面ABCD,∴ÐPCA就是PC与底面ABCD所成的角, ∴tanÐPCA=(14分)
复制答案
考点分析:
相关试题推荐
某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h),可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700],由于工作不慎将部分数据丢失,现有以下图表.
(1)求图2中的A及表格中的B,C,D,E,F,G,H,I的值;
(2)求上图中阴影部分的面积;
(3)若电子元件的使用时间超过300 h,则为合格产品,求这批电子元件合格的概率.manfen5.com 满分网
分组[100,200](200,300](300,400](400,500](500,600](600,700]
频数B30EF20H
频率CD0.20.4GI

查看答案
已知椭圆manfen5.com 满分网,A,B分别为左顶点和上顶点,F为右焦点,过F作x轴的垂线交椭圆于点C,且直线AB与直线OC平行.
(1)求椭圆的离心率;
(2)已知定点M(3,0),P为椭圆上的动点,若△OMP的重心轨迹经过点(1,1),求椭圆的方程.
查看答案
甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹).
(1)如果甲只射击1次,求在这一枪出现空弹的概率;
(2)如果甲共射击3次,求在这三枪中出现空弹的概率;
(3)如果在靶上画一个边长为10的等边△PQR,甲射手用实弹瞄准了三角形PQR区域随机射击,且弹孔都落在三角形PQR弹孔与△PQR三个顶点的距离都大于1的概率(忽略弹孔大小).
查看答案
已知p:x2-8x-20>0,q:x2-2x+1-a2>0.若p是q的充分而不必要条件,求正实数a的取值范围.
查看答案
线段PQ是椭圆manfen5.com 满分网过M(1,0)的一动弦,且直线PQ与直线x=4交于点S,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.