考点分析:
相关试题推荐
如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).
查看答案
如图,在四棱锥p-ABCD中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求二面角B-PC-A的余弦值.
查看答案
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M
-1以及椭圆
在M
-1的作用下的新曲线的方程.
查看答案
已知曲线C
1的极坐标方程为P=6cosθ,曲线C
2的极坐标方程为θ=
(p∈R),曲线C
1,C
2相交于A,B两点.
(Ⅰ)把曲线C
1,C
2的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦AB的长度.
查看答案
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R).
(1)求f(x)的解析式;
(2)设a=-1,
,求证:当x∈(0,e]时,
恒成立;
(3)是否存在负数a,使得当x∈(0,e]时,f(x)的最大值是-3?如果存在,求出实数a的值;如果不存在,请说明理由.
理科选修.
查看答案