满分5 > 高中数学试题 >

不等式-x2-5x+6≤0的解集为( ) A.{x|x≥6或x≤-1} B.{x...

不等式-x2-5x+6≤0的解集为( )
A.{x|x≥6或x≤-1}
B.{x|-1≤x≤6}
C.{x|-6≤x≤1}
D.{x|x≤-6或x≥1}
根据不等式的基本性质在不等式两边都除以-1,不等号方向改变,因式分解后转化为x-1与x+6同号,即可求出原不等式的解集. 【解析】 原不等式可化为:x2+5x-6≥0, 因式分解得:(x-1)(x+6)≥0, 即或, 解得:x≥1或x≤-6, 所以原不等式的解集为:{x|x≤-6或x≥1}. 故选D
复制答案
考点分析:
相关试题推荐
“x<-1”是“x2-1>0”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为manfen5.com 满分网的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.

manfen5.com 满分网 查看答案
椭圆manfen5.com 满分网的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为manfen5.com 满分网,倾斜角为45°的直线l过点F.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由.
查看答案
如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上.如果∠P=50°,那么∠ACB等于( )
manfen5.com 满分网
A.40°
B.50°
C.65°
D.130°
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.