满分5 > 高中数学试题 >

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线...

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
(1)由勾股定理可得 PQ2=OP2-OQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2,化简可得a,b间满足的等量关系. (2)由于 PQ==,利用二次函数的性质求出它的最小值. (3)设⊙P 的半径为R,可得|R-1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=-2a+3=,R取得最小值为-1,从而得到圆的标准方程. 【解析】 (1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2-OQ2. 由已知PQ=PA,可得 PQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2. 花简可得 2a+b-3=0. (2)∵PQ====, 故当a=时,线段PQ取得最小值为. (3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R-1|≤PO≤R+1. 而OP===,故当a=时,PO取得最小值为, 此时,b=-2a+3=,R取得最小值为-1. 故半径最小时⊙P 的方程为 +=.
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系,
证明:E G⊥D F.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.
查看答案
直线l经过点P(5,5),且和圆C:x2+y2=25相交,截得弦长为manfen5.com 满分网,求l的方程.
查看答案
如图:S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的点,且manfen5.com 满分网=manfen5.com 满分网,求证:MN∥平面SBC
manfen5.com 满分网
查看答案
一个用鲜花做成的花柱,它的下面是一个直径为2m、高为4m的圆柱形物体,上面是一个半球形体,如果每平方米大约需要鲜花200朵,那么装饰这个花柱大约需要多少朵鲜花?(π取3.1)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.