满分5 > 高中数学试题 >

已知关于x的一元二次函数f(x)=ax2-4bx+1. (1)设集合P={1,2...

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
(1)本题是一个等可能事件的概率,试验发生包含的事件是3×5,满足条件的事件是函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率. (2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果. 【解析】 (1)由题意知本题是一个等可能事件的概率, ∵试验发生包含的事件是3×5=15, 函数f(x)=ax2-4bx+1的图象的对称轴为, 要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数, 当且仅当a>0且,即2b≤a 若a=1则b=-1,若a=2则b=-1,1;若a=3则b=-1,1; ∴事件包含基本事件的个数是1+2+2=5 ∴所求事件的概率为. (2)由(Ⅰ)知当且仅当2b≤a且a>0时, 函数f(x)=ax2-4bx+1在区是间[1,+∞)上为增函数, 依条件可知试验的全部结果所构成的区域为 构成所求事件的区域为三角形部分 由得交点坐标为, ∴所求事件的概率为.
复制答案
考点分析:
相关试题推荐
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期12月1日12月2日12月3日12月4日12月5日
温差x(°C)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程manfen5.com 满分网
参考公式:manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网
查看答案
在一次休闲方式调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)检验性别与休闲多大程度上有关系.
附:(1)Χ2的计算公式:manfen5.com 满分网
(2)临值表:
P(Χ2≥x0.500.400.250.150.100.050.0250.0100.0050.001
x0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案
manfen5.com 满分网随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
查看答案
以下是某同学设计的程序流程图及其相应程序,用于实现用二分法求近似值,但步骤并不完整,请在答题卡的相应编号的位置补上适当的语句或条件,以保证该程序能顺利运行并达到预期的目的.(命令提示符“Define”的功能为定义函数表达式)
manfen5.com 满分网
查看答案
用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖     块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是     manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.