满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,...

manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
(I)由已知中侧面ABB1A1,ACC1A1均为正方形,由正方形的几何特征结合线面垂直的判定,易得AA1⊥平面ABC,即三棱柱ABC-A1B1C1是直三棱柱,再由点D是棱B1C1的中点,结合等腰三角形“三线合一”,及直三棱柱的几何特征,结合线面垂直的判定定理,即可得到A1D⊥平面BB1C1C; (Ⅱ)连接AC1,交A1C于点O,连接OD,由正方形的几何特征及三角形中位线的性质,可得OD∥AB1,进而结合线面平行的判定定理,我们易得,AB1∥平面A1DC; (Ⅲ)因为AB,AC,AA1两两互相垂直,故可以以A坐标原点,建立空间坐标系,求出几何体中各顶点的坐标,进而求出平面DA1C与平面A1CA的法向量,代入向量夹角公式,即可得到答案. (Ⅰ)证明:因为侧面ABB1A1,ACC1A1均为正方形, 所以AA1⊥AC,AA1⊥AB, 所以AA1⊥平面ABC,三棱柱ABC-A1B1C1是直三棱柱.(1分) 因为A1D⊂平面A1B1C1,所以CC1⊥A1D,(2分) 又因为A1B1=A1C1,D为B1C1中点, 所以A1D⊥B1C1.(3分) 因为CC1∩B1C1=C1, 所以A1D⊥平面BB1C1C.(4分) (Ⅱ)证明:连接AC1,交A1C于点O,连接OD, 因为ACC1A1为正方形,所以O为AC1中点,又D为B1C1中点, 所以OD为△AB1C1中位线,所以AB1∥OD,(6分) 因为OD⊂平面A1DC,AB1⊄平面A1DC, 所以AB1∥平面A1DC.(8分) (Ⅲ)【解析】 因为侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°, 所以AB,AC,AA1两两互相垂直,如图所示建立直角坐标系A-xyz. 设AB=1,则.,(9分) 设平面A1DC的法向量为n=(x,y,z),则有,,x=-y=-z, 取x=1,得n=(1,-1,-1).(10分) 又因为AB⊥平面ACC1A1,所以平面ACC1A1的法向量为,(11分),(12分) 因为二面角D-A1C-A是钝角, 所以,二面角D-A1C-A的余弦值为.(13分)
复制答案
考点分析:
相关试题推荐
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张.每张奖券中奖的概率为manfen5.com 满分网,若中奖,则家具城返还顾客现金1000元.某顾客购买一张价格为3400元的餐桌,得到3张奖券.设该顾客购买餐桌的实际支出为ξ(元).
(Ⅰ)求ξ的所有可能取值;
(Ⅱ)求ξ的分布列和数学期望Eξ.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若manfen5.com 满分网,求f(x)的最大值和最小值,以及对应的x的值.
查看答案
如图,点B在⊙O上,M为直径AC上一点,BM的延长线交⊙O于N,∠BNA=45°,若⊙O的半径为2manfen5.com 满分网,OA=manfen5.com 满分网OM,则MN的长为   
manfen5.com 满分网 查看答案
在极坐标系中,圆ρ=2cosθ的圆心到直线ρcosθ=2的距离是    查看答案
如图,第n(n∈N*)个图形是由正n+2边形“扩展”而来,例如第一个图形由正三边形“扩展”而来,…,则前30个图形中共有    个顶点.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.