满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90...

如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1CC1
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若AB=manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网
(1)求出平面的法向量与直线所在的向量,利用向量的有关运算求出两个向量的夹角,进而转化为线面角即可. (2)根据点的特殊位置设出点的坐标为E(1,y,0),再利用向量的基本运算证明两个向量垂直即可证明两条直线相互垂直. (3)结合题意求出两个平面的法向量求出两个法向量的夹角,再转化为两个平面的二面角即可. 【解析】 如图,以B为原点建立空间直角坐标系,则B(0,0,0),C1(1,2,0),B1(0,2,0) (1)直三棱柱ABC-A1B1C1中, 平面ABC的法向量,又, 设BC1与平面ABC所成角为θ ,则. (2)设E(1,y,0),A(0,0,z),则, ∵EA⊥EB1, ∴ ∴y=1,即E(1,1,0)所以E为CC1的中点. (3)∵A(0,0,),则, 设平面AEB1的法向量m=(x1,y1,z1), 则∴, 取, ∵, ∴BE⊥B1E,又BE⊥A1B1∴BE⊥平面A1B1E, ∴平面A1B1E的法向量, ∴, ∴二面角A-EB1-A1为45°.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx-2与椭圆C交与A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.
查看答案
已知manfen5.com 满分网展开式中,某一项的系数恰好是它的前一项系数的2倍,而等于它后一项系数的manfen5.com 满分网.则该展开式中二项式系数最大的项是第    项. 查看答案
4.0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是    查看答案
数据x1,x2,…,x8平均数为6,标准差为2,则数据2x1-6,2x2-6,…,2x8-6的平均数为    ,方差为    查看答案
已知命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0,若命题“p且q”是真命题,则实数a的取值范围为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.