满分5 > 高中数学试题 >

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂...

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求manfen5.com 满分网的最大值.
(1)先设出点P的坐标,代入整理即可得到动点P的轨迹C的方程; (2)先利用条件设出圆的方程,并求出A、B两点的坐标以及|DA|=l1,|DB|=l2的表达式,代入整理后利用基本不等式求最大值即可. (1)【解析】 设P(x,y),则Q(x,-1), ∵, ∴(0,y+1)•(-x,2)=(x,y-1)•(x,-2). 即2(y+1)=x2-2(y-1),即x2=4y, 所以动点P的轨迹C的方程x2=4y. (2)【解析】 设圆M的圆心坐标为M(a,b),则a2=4b.① 圆M的半径为. 圆M的方程为(x-a)2+(y-b)2=a2+(b-2)2. 令y=0,则(x-a)2+b2=a2+(b-2)2, 整理得,x2-2ax+4b-4=0.② 由①、②解得,x=a±2. 不妨设A(a-2,0),B(a+2,0), ∴,. ∴=,③ 当a≠0时,由③得,. 当且仅当时,等号成立. 当a=0时,由③得,. 故当时,的最大值为.
复制答案
考点分析:
相关试题推荐
投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标
(1)求点P落在区域C:x2+y2≤10内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.
查看答案
如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1CC1
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若AB=manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx-2与椭圆C交与A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.
查看答案
已知manfen5.com 满分网展开式中,某一项的系数恰好是它的前一项系数的2倍,而等于它后一项系数的manfen5.com 满分网.则该展开式中二项式系数最大的项是第    项. 查看答案
4.0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.