满分5 > 高中数学试题 >

已知函数,f(x)=alnx-ax-3(a∈R). (1 )当a=1时,求函数f...

已知函数,f(x)=alnx-ax-3(a∈R).
(1 )当a=1时,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t[1,2],函数manfen5.com 满分网在区间(t,3)丨上总存在极值?
利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间), 对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况; (2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围. 【解析】 (Ⅰ) , 当a=1时, 令导数大于0,可解得0<x<1,令导数小于0,可解得x<0(舍)或x>1 故函数的单调增区间为(0,1),单调减区间是(1,+∞) (Ⅱ) 得a=-2,f(x)=-2lnx+2x-3 ∴, ∴g'(x)=3x2+(m+4)x-2 ∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2 ∴, 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立, 所以有:, ∴.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图所示,某市准备在一个湖泊的一侧修建一条直路OC;另一侧修建一条观光大道,它的前一段OD是以O为顶点,x轴为对称轴,开口向右的抛物线的一部分,后一段DBC是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<manfen5.com 满分网),x∈[4,8]时的图象,图象的最高点为B(5,manfen5.com 满分网),DF⊥OC,垂足为F.
(I)求函数y=Asin(ωx+φ)的解析式;
(II)若在湖泊内修建如图所示的矩形水上乐园PMFE,问点P落在曲线OD上何处时,水上乐园的面积最大?
查看答案
将如图1的直角梯形ABEF(图中数字表示对应线段的长度)沿直线CD折成直二面角,连接部分线段后围成一个空间几何体,如图2所示.
(I)证明:直线BE∥平面ADF;
(II)求面FBE与面ABCD所成角的正切值.

manfen5.com 满分网 查看答案
在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cosmanfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=3,b+c=6
(I)求a的值;
(II)求manfen5.com 满分网的值.
查看答案
已知数列{an}是等比数列,Sn为其前n项和.
(I)设manfen5.com 满分网,求an
(II)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列.
查看答案
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2+6x+21)+f(y2-8y)<0恒成立,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.