(Ⅰ)将f(x)的解析式的第一项利用两角和与差的正弦函数公式化简,去括号整理后再利用特殊角的三角函数值及两角和与差的正弦公式化为一个角的正弦函数,根据x的范围,得出这个角的范围,利用正弦函数的图象与性质得出f(x)的值域,即可确定出f(x)的最小值;
(II)由f(B)=1,将x=B代入函数f(x)的解析式,根据正弦函数的图象与性质得到关于x的方程,根据B为三角形的内角,可得出B的度数,进而确定出sinB的值,由cosA的值,以及A为三角形的内家,利用同角三角函数间的基本关系求出sinA的值,再由b的值,利用正弦定理即可求出a的值.
【解析】
(Ⅰ)f(x)=(sinx+cosx)-cosx
=sinx+cosx=sin(x+),
∵≤x+≤,
∴x=π时,f(x)min=-;
(II)∵f(B)=1,
∴x+=2kπ+,k∈Z,又B为三角形的内角,
∴B=,
∵cosA=,∴sinA==,
又b=5,
由正弦定理得=,得a===8.