满分5 > 高中数学试题 >

已知,椭圆C过点A,两个焦点为(-1,0),(1,0). (1)求椭圆C的方程;...

已知,椭圆C过点Amanfen5.com 满分网,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
(Ⅰ)由题意,c=1,可设椭圆方程代入已知条件得,求出b,由此能够求出椭圆方程. (Ⅱ)设直线AE方程为:,代入得,再点在椭圆上,结合直线的位置关系进行求解. 【解析】 (Ⅰ)由题意,c=1, 可设椭圆方程为, 解得b2=3,(舍去) 所以椭圆方程为. (Ⅱ)设直线AE方程为:, 代入得 设E(xE,yE),F(xF,yF), 因为点在椭圆上, 所以,. 又直线AF的斜率与AE的斜率互为相反数, 在上式中以-K代K,可得, 所以直线EF的斜率 即直线EF的斜率为定值,其值为.
复制答案
考点分析:
相关试题推荐
设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
查看答案
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在实数m,使得方程manfen5.com 满分网在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
查看答案
已知函数f(x)=manfen5.com 满分网-xm,且f(4)=-manfen5.com 满分网
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明.
查看答案
已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
查看答案
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.