设椭圆
的右焦点为F
1,直线
与x轴交于点A,若
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x
2+(y-2)
2=1的任意一条直径(E、F为直径的两个端点),求
的最大值.
考点分析:
相关试题推荐
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
,求AP的长度.
查看答案
在棱长为1的正方体ABCD-A
1B
1C
1D
1中,E,F,G,H分别是棱AB,CC
1,D
1A
1,BB
1的中点;
(1)证明:FH∥平面A
1EG;
(2)求三棱锥A
1-EFG的体积.
查看答案
设A,B是双曲线的两个焦点,C在双曲线上.已知△ABC的三边长成等差数列,且∠ACB=120°,则该双曲线的离心率为
.
查看答案
设k为正实数,若满足条件x(x-k)≤y(k-y)的点(x,y)都被单位圆覆盖,则k的最大值为
.
查看答案