满分5 > 高中数学试题 >

如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2-b截得的...

如图,椭圆C1manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得manfen5.com 满分网=manfen5.com 满分网?请说明理由.

manfen5.com 满分网
(Ⅰ)先利用离心率得到一个关于参数的方程,再利用x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长得另一个方程,两个方程联立即可求出参数进而求出C1,C2的方程; (Ⅱ)(i)把直线l的方程与抛物线方程联立可得关于点A、B坐标的等量关系,再代入求出kMA•kMB=-1,即可证明:MD⊥ME; (ii)先把直线MA的方程与抛物线方程联立可得点A的坐标,再利用弦长公式求出|MA|,同样的方法求出|MB|进而求出S1,同理可求S2.再代入已知就可知道是否存在直线l满足题中条件了. 【解析】 (Ⅰ)由题得e=,从而a=2b,又2=a,解得a=2,b=1, 故C1,C2的方程分别为,y=x2-1. (Ⅱ)(i)由题得,直线l的斜率存在,设为k,则直线l的方程为y=kx, 由得x2-kx-1=0. 设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根, 于是x1+x2=k,x1x2=-1,又点M的坐标为(0,-1), 所以kMA•kMB=====-1. 故MA⊥MB,即MD⊥ME. (ii)设直线MA的斜率为k1,则直线MA的方程为y=k1x-1. 由,解得或. 则点A的坐标为(k1,k12-1). 又直线MB的斜率为-,同理可得点B的坐标为(-,-1). 于是s1=|MA|•|MB|=•|k1|••|-|=. 由得(1+4k12)x2-8k1x=0. 解得或,,则点D的坐标为(,). 又直线ME的斜率为-.同理可得点E的坐标为(,). 于是s2=|MD|•|ME|=. 故=,解得k12=4或k12=. 又由点A,B的坐标得,k==k1-.所以k=±. 故满足条件的直线存在,且有两条,其方程为y=x和y=-x.
复制答案
考点分析:
相关试题推荐
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线manfen5.com 满分网上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱AB,CC1,D1A1,BB1的中点.
(1)证明:FH∥平面A1EG;
(2)证明:AH⊥EG;
(3)求三棱锥A1-EFG的体积.
查看答案
设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为    查看答案
设A,B是双曲线的两个焦点,C在双曲线上.已知△ABC的三边长成等差数列,且∠ACB=120°,则该双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.