满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2,...

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E、F分别是线段AB、BC的中点.
(Ⅰ)证明:PF⊥FD;
(Ⅱ)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值;.

manfen5.com 满分网
(I)连接AF,由勾股定理可得DF⊥AF,由PA⊥平面ABCD,由线面垂直性质定理可得DF⊥PA,再由线面垂直的判定定理得到DF⊥平面PAF,再由线面垂直的性质定理得到PF⊥FD; (Ⅱ)由PA⊥平面ABCD,可得∠PBA是PB与平面ABCD所成的角,即∠PBA=45°,取AD的中点M,则FM⊥AD,FM⊥平面PAD,在平面PAD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A-PD-F的平面角,解三角形MNF可得答案. (Ⅰ)证明:连接AF,则, 又AD=2,∴DF2+AF2=AD2, ∴DF⊥AF(2分) 又PA⊥平面ABCD, ∴DF⊥PA,又PA∩AF=A, ∴ (Ⅱ)∵PA⊥平面ABCD, ∴∠PBA是PB与平面ABCD所成的角,且∠PBA=45°. ∴PA=AB=1(9分) 取AD的中点M, 则FM⊥AD,FM⊥平面PAD,在平面PAD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A-PD-F的平面角 ∵Rt△MND∽Rt△PAD, ∴, ∵,且∠FMN=90° ∴,, ∴
复制答案
考点分析:
相关试题推荐
第26届世界大学生夏季运动会2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在深圳大学数学学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm),这30名志愿者的身高如下:
manfen5.com 满分网
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.
(注:茎叶图:将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.如157cm,茎是15,叶是7)
查看答案
已知数列{an}的前n和为Sn,且满足manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)若manfen5.com 满分网,且数列{cn}的前n项和为Tn,求Tn得取值范围.
查看答案
在平面几何里,有:“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=manfen5.com 满分网(a+b+c)r”,拓展到空间,类比上述结论,“若四面体A-ACD的四个面的面积分别为S1,S2,S3,S4内切球的半径为r,则四面体的体积为    查看答案
函数manfen5.com 满分网,若f(1)+f(a)=2,则a=    查看答案
在△ABC中,若B=2A,manfen5.com 满分网,则A=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.