满分5 > 高中数学试题 >

已知函f(x)=x2-8lnx,g(x)=-x2+14x (1)求函数f(x)在...

已知函f(x)=x2-8lnx,g(x)=-x2+14x
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求a的取值范围;
(3)若方程f(x)=g(x)+m有唯一解,试求实数m的值.
(1)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. (2)由已知中函数f(x)=x2-8lnx,g(x)=-x2+14x的解析式,我们易求出他们导函数的解析式,进而求出导函数大于0的区间,构造关于a的不等式,即可得到实数a的取值范围; (3)若方程f(x)=g(x)+m有唯一解,则函数h(x)=f(x)-g(x)=2x2-8lnx-14x与y=m的图象有且只有一个交点,求出h'(x)后,易求出函数的最值,分析函数的性质后,即可得到满足条件的实数m的值. 【解析】 (1)因为f′(x)=2x-,所以切线的斜率k=f′(x)=-6 又f(1)=1,故所求切线方程为y-1=-6(x-1)即y=-6x+7. (2)(x>0) 当0<x<2时,f'(x)<0,当x>2时,f'(x)>0, 要使f(x)在(a,a+1)上递增,必须a≥2g(x)=-x2+14x=-(x-7)2+49 如使g(x)在(a,a+1)上递增,必须a+1≤7,即a≤6 由上得出,当2≤a≤6时f(x),g(x)在(a,a+1)上均为增函数 (3)方程f(x)=g(x)+m有唯一解 有唯一解 设h(x)=2x2-8lnx-14x (x>0)h'(x),h(x)随x变化如下表 x (0,4) 4 (4,+∞) h'(x) - + h(x) ↘ 极小值-24-16ln2 ↗ 由于在(0,+∞)上,h(x)只有一个极小值, ∴h(x)的最小值为-24-16ln2, 当m=-24-16ln2时,方程f(x)=g(x)+m有唯一解.
复制答案
考点分析:
相关试题推荐
求证:对于大于1的任意自然数n,都有manfen5.com 满分网
查看答案
已知函数f(x)=loga(2-x)+loga(x+2)(0<a<1)
(I)求函数f(x)的零点;
(II)若函数f(x)的最小值为-2,求a的值.
查看答案
经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千/小时)之间有函数关系:manfen5.com 满分网
(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(精确到0.01千辆);
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=manfen5.com 满分网时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案
设集合A={x|x2-4<0},manfen5.com 满分网
( I)求集合CRA∩B;
( II)若不等式2x2+ax+b<0的解集为B,求a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.