满分5 > 高中数学试题 >

已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥...

已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.
本题考查的知识点是命题的真假判定,由命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立,我们易求出P是真命题时,a的取值范围;由命题q:不等式ax2+2x-1>0有解,我们也易求出q为假命题时的a的取值范围,再由命题p是真命题,命题q是假命题,求出两个范围的公共部分,即得答案. 【解析】 ∵x1,x2是方程x2-mx-2=0的两个实根 ∴ ∴|x1-x2|= = ∴当m∈[-1,1]时,|x1-x2|max=3, 由不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立. 可得:a2-5a-3≥3,∴a≥6或a≤-1, ∴命题p为真命题时a≥6或a≤-1, 命题q:不等式ax2+2x-1>0有解. ①当a>0时,显然有解. ②当a=0时,2x-1>0有解 ③当a<0时,∵ax2+2x-1>0有解, ∴△=4+4a>0,∴-1<a<0, 从而命题q:不等式ax2+2x-1>0有解时a>-1. 又命题q是假命题, ∴a≤-1, 故命题p是真命题且命题q是假命题时, a的取值范围为a≤-1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=loga(2-x)+loga(x+2)(0<a<1)
(I)求函数f(x)的零点;
(II)若函数f(x)的最小值为-2,求a的值.
查看答案
经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千/小时)之间有函数关系:manfen5.com 满分网
(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(精确到0.01千辆);
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=manfen5.com 满分网时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案
设集合A={x|x2-4<0},manfen5.com 满分网
( I)求集合CRA∩B;
( II)若不等式2x2+ax+b<0的解集为B,求a,b的值.
查看答案
给出下列四个命题:
①“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,
则x<0时,f′(x)>g′(x);
③函数manfen5.com 满分网是偶函数;
④若对∀x∈R,函数f(x)满足f(x+2)=-f(x),则4是该函数的一个周期,
其中所有真命题的序号为    (注:将真命题的序号全部填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.