满分5 > 高中数学试题 >

在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bc...

在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bcosC.
(I)求角B的大小;(II)若manfen5.com 满分网
(1)先根据正弦定理用正弦表示出边,然后代入到已知条件中,再由两角和与差的公式整理可得到cosB的值,最后可得角B的值. (2)根据余弦定理将代入求出ac的值,再由三角形的面积公式可求得结果. 【解析】 (I)在△ABC中,由正弦定理得: a=2RsinA,b=2RsinB,c=2RsinC代入(2a-c)cosB=bcosC整理得: 2sinAcosB=sinBcosC+sinCcosB 即:2sinAcosB=sin(B+C)=sinA,在三角形中,sinA>0,2cosB=1, ∵∠B是三角形的内角,∴B=60°. (II)在△ABC中,由余弦定理得: b2=a2+c2-2ac•cosB=(a+c)2-2ac-2ac•cosB ac=3 故.
复制答案
考点分析:
相关试题推荐
已知f (x)=manfen5.com 满分网sin2x-cos2-manfen5.com 满分网,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=manfen5.com 满分网,f (C)=0,若manfen5.com 满分网=(1,sinA)与manfen5.com 满分网=(2,sinB)共线,求a,b的值.
查看答案
已知:数列{an}的前n项和为Sn,a1=3且当n≥2n∈N+满足Sn-1是an与-3的等差中项.
(1)求a2,a3,a4
(2)求数列{an}的通项公式.
查看答案
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f′(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,manfen5.com 满分网)上不是凸函数的是    .(把你认为正确的序号都填上)
①f(x)=sin x+cos x;
②f(x)=ln x-2x;
③f(x)=-x3+2x-1;
④f(x)=xex查看答案
设Sn表示等差数列{an}的前n项和,且S9=18,Sn=240,若an-4=30(n>9),则n=    查看答案
已知manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.