满分5 > 高中数学试题 >

已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,...

已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.
(I)由{an}为递增的等比数列,得到数列{an}的公比q>0,且a1>0,又{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16},可得出a1,a3,a5三项,则公比可求,通项可求. (II)先假设存在等差数列{bn},由所给式子求出b1,b2,公差可求,通项可求,证明当bn=n时,a1bn+a2bn-1++an-1b2+anb1=2n+1-n-2对一切n∈N*都成立,用错位相减法求得此数列是适合的. 【解析】 (I)因为{an}是递增的等比数列,所以数列{an}公比q>0,首项a1>0, 又{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}, 所以a1=1,a3=4,as=16(3分) 从而,q=2,an=a1qn-1=2n-1 所以数列{an}的通项公式为an=2n-1(6分) (II)假设存在满足条件的等整数列{bn},其公差为d,则当n=1时,a1b1=1, 又∵a1=1,∴b1=1; 当n=2时,a1b2+a2b1=4,b2+2b1=4,b2=2 则d=b2-b1=1,∴bn=b1+(n-1)d=1+(n-1)×1=n(8分) 以下证明当bn=n时,a1bn+a2bn-1++an-1b2+anb1=2n+1-n-2对一切n∈N*都成立. 设Sn=a1bn+a2bn-1+…+an-1b2+anb1, 即Sn=1×n+2×(n-1)+22×(n-2)+23×(n-3)+…+2n-2×2+2n-1×1,(1) 2Sn=2×n+22×(n-1)+23×(n-2)+…+2n-1×2+2n×1,(2) (2)-(1)得Sn=-n+2+22+23++2n-1+2n=, 所以存在等差数列{bn},bn=n使得a1bn+a2bn-1+a3bn-2+anb1=2n+1-n-2对一切n∈N*都成立(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=kx+m,数列{an},{bn}满足:当x∈[a1,b1]时,f(x)的值域是[a2,b2];当x∈[a2,b2]时,f(x)的值域是[a3,b3],…,当x∈[an-1,bn-1](n∈N,且n≥2)时,f(x)的值域是{an,bn},其中k,m为常数,a1=0,b1=1.
(1)若k=1,m=2,求a2,b2以及数列{an}与{bn}的通项;
(2)若k=2,且数列{bn}是等比数列,求m的值;
(3)(附加题:5分,记入总分,但总分不超过150分)若k>0,设{an}与{bn}的前n项和分别为Sn和Tn,求-.
查看答案
已知数列{an}的前n项和Sn=2-an
(1)求数列{an}的通项公式;
(2)求数列{Sn}的前项和.
查看答案
如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,CD,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).

manfen5.com 满分网 查看答案
已知f(x)=cosx-cos(x+manfen5.com 满分网).
(1)求函数f(x)在区间,[manfen5.com 满分网manfen5.com 满分网]上的最小值和最大值;
(2)在△ABC中,a,b,c分别是角A,B,C所对的边,且f(A)=1,△ABC的面积为S=6manfen5.com 满分网,b=4,求a的值.
查看答案
五位同学围成一圈依次循环报数,规定①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学报出的数之和,②若报出的数为3的倍数,则报该数的同学需拍手1次.已知甲同学第一个报数.当五位同学依次循环报到第100个数时,甲同学拍手的总次数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.