满分5 > 高中数学试题 >

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+c=b. (1)...

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
(1)首先利用正弦定理化边为角,可得2RsinAcosC+2RsinC=2RsinB,然后利用诱导公式及两角和与差的正弦公式化简可得cosA=,进而求出∠A. (2)首先利用正弦定理化边为角,可得l=1+,然后利用诱导公式将sinC转化为sin(A+B),进而由两角和与差的正弦公式化简可得l=1+2sin(B+),从而转化成三角函数求值域问题求解;或者利用余弦定理结合均值不等式求解. 【解析】 (1)∵accosC+c=b, 由正弦定理得2RsinAcosC+2RsinC=2RsinB, 即sinAcosC+sinC=sinB, 又∵sinB=sin(A+C)=sinAcosC+cosAsinC, ∴sinC=cosAsinC, ∵sinC≠0, ∴, 又∵0<A<π, ∴. (2)由正弦定理得:b==,c=, ∴l=a+b+c =1+(sinB+sinC) =1+(sinB+sin(A+B)) =1+2(sinB+cosB) =1+2sin(B+), ∵A=,∴B,∴B+,∴, 故△ABC的周长l的取值范围为(2,3]. (2)另【解析】 周长l=a+b+c=1+b+c, 由(1)及余弦定理a2=b2+c2-2bccosA, ∴b2+c2=bc+1, ∴(b+c)2=1+3bc≤1+3()2, 解得b+c≤2, 又∵b+c>a=1, ∴l=a+b+c>2, 即△ABC的周长l的取值范围为(2,3].
复制答案
考点分析:
相关试题推荐
从神八飞船带回的某种植物种子由于在太空中被辐射,我们把它们称作“太空种子”,这种“太空种子”成功发芽的概率为manfen5.com 满分网,不发生基因突变的概率为manfen5.com 满分网,种子发芽与发生基因突变是两个相互独立事件,科学家在实验室对“太空种子”进行培育,从中选出优良品种.
(1)这种“太空种子”中的某一粒种子既发芽又发生基因突变的概率是多少?
(2)四粒这种“太空种子”中至少有两粒既发芽又发生基因突变的概率是多少?
查看答案
已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法
①2a-3b+1>0;            
②a≠0时,manfen5.com 满分网有最小值,无最大值;
manfen5.com 满分网恒成立;
④当a>0且a≠1,b>0时,则manfen5.com 满分网的取值范围为(-manfen5.com 满分网
其中正确的命题是    (填上正确命题的序号). 查看答案
若(1-2x9展开式的第3项为288,则manfen5.com 满分网=    查看答案
若不等式manfen5.com 满分网≤a≤manfen5.com 满分网,在t∈(0,2]上恒成立,则a的取值范围是    查看答案
在抽查某产品的尺寸的进程中,将其尺寸分成若干组,[a,b]是其中的一组,已知该组的频率为m,该组的直方图的高为h,则|a-b|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.