已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k
1,k
2,证明:k
1•k
2为定值.
考点分析:
相关试题推荐
已知数列{a
n}中a
1=2,点(a
n,a
n+1) 在函数f(x)=x
2+2x的图象上,n∈N
*.数列{b
n}的前n项和为S
n,且满足
b
1=1,当n≥2时,S
n2=b
n(S
n-
)
(1)证明数列{lg(1+a
n)}是等比数列;
(2)求S
n;
(3)设T
n=(1+a
1)(1+a
2)…(1+a
n)c
n=
,求T
n•(c
1+c
2+c
3+…+c
n)的值.
查看答案
已知Rt△ABC两锐角A,B的正弦值,是实系数方程
的两根.若数列{a
n}满足
,且a
1=5.试求数列{a
n}的前n项和为T
n.
查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+
c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
查看答案
从神八飞船带回的某种植物种子由于在太空中被辐射,我们把它们称作“太空种子”,这种“太空种子”成功发芽的概率为
,不发生基因突变的概率为
,种子发芽与发生基因突变是两个相互独立事件,科学家在实验室对“太空种子”进行培育,从中选出优良品种.
(1)这种“太空种子”中的某一粒种子既发芽又发生基因突变的概率是多少?
(2)四粒这种“太空种子”中至少有两粒既发芽又发生基因突变的概率是多少?
查看答案
已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法
①2a-3b+1>0;
②a≠0时,
有最小值,无最大值;
③
恒成立;
④当a>0且a≠1,b>0时,则
的取值范围为(-
;
其中正确的命题是
(填上正确命题的序号).
查看答案