(1)、根据等比数列的基本性质以及题中已知条件便可求出a1和q的值,进而求出数列{an}的通项公式;
(2)、根据等比数列前n项和的求法求出数列{an}的前n项和记为Sn,即可证明Sn<128(n=1,2,3…).
【解析】
(1)设等比数列{an}的公比为q(q∈R),由a7=a1q6=1,得a1=q-6,
从而a4=a1q3=q-3,a5=a1q4=q-2,a6=a1q5=q-1.
因为a4,a5+1,a6成等差数列,
所以a4+a6=2(a5+1),即q-3+q-1=2(q-2+1),q-1(q-2+1)=2(q-2+1).
所以q=.故an=a1qn-1=q-6qn-1=64()n-1=27-n
(2)又等比数列前n项和的公式可知:
Sn===128[1-()n]<128.