满分5 > 高中数学试题 >

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*. (Ⅰ)证明数...

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
(Ⅰ)整理题设an+1=4an-3n+1得an+1-(n+1)=4(an-n),进而可推断数列{an-n}是等比数列. (Ⅱ)由(Ⅰ)可数列{an-n}的通项公式,进而可得{an}的通项公式根据等比和等差数列的求和公式,求得Sn. (Ⅲ)把(Ⅱ)中求得的Sn代入Sn+1-4Sn整理后根据证明原式. 【解析】 (Ⅰ)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*. 又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列. (Ⅱ)由(Ⅰ)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n. 所以数列{an}的前n项和. (Ⅲ)证明:对任意的n∈N*,=. 所以不等式Sn+1≤4Sn,对任意n∈N*皆成立.
复制答案
考点分析:
相关试题推荐
已知f(x)=-3x2+a(6-a)x+6.
(Ⅰ)解关于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集为(-1,3),求实数a,b的值.
查看答案
已知数列{an}中,a1=1,当n≥2时,manfen5.com 满分网
(Ⅰ)证明数列{Sn}是一个等差数列;
(Ⅱ)求an
查看答案
已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3…).
查看答案
解关于x的不等式:manfen5.com 满分网
查看答案
已知在△ABC中,A=45°,AB=manfen5.com 满分网,BC=2.解此三角形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.