(Ⅰ)首先对f(x)求导,将a=代入,令f′(x)=0,解出后判断根的两侧导函数的符号即可.
(Ⅱ)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤0即可.
【解析】
对f(x)求导得
f′(x)=×ex
(Ⅰ)当a=时,若f′(x)=0,则4x2-8x+3=0,解得
结合①,可知
所以,是极小值点,是极大值点.
(Ⅱ)若f(x)为R上的单调函数,则f′(x)在R上不变号,
结合①与条件a>0知ax2-2ax+1≥0在R上恒成立,
因此△=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.