满分5 > 高中数学试题 >

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程;...

已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y)在线段AB的垂直平分线上,且manfen5.com 满分网,求y的值.
(1)由离心率求得a和c的关系,进而根据c2=a2-b2求得a和b的关系,进而根据 求得a和b,则椭圆的方程可得. (2)由(1)可求得A点的坐标,设出点B的坐标和直线l的斜率,表示出直线l的方程与椭圆方程联立,消去y,由韦达定理求得点B的横坐标的表达式,进而利用直线方程求得其纵坐标表达式,表示出|AB|进而求得k,则直线的斜率可得.设线段AB的中点为M,当k=0时点B的坐标是(2,0),线段AB的垂直平分线为y轴,进而根据 求得y;当k≠0时,可表示出线段AB的垂直平分线方程,令x=0得到y的表达式根据 求得y;综合答案可得. 【解析】 (1)由e=,得3a2=4c2. 再由c2=a2-b2,解得a=2b. 由题意可知 ,即ab=2. 解方程组 得a=2,b=1. 所以椭圆的方程为 . (2)由(Ⅰ)可知点A的坐标是(-2,0). 设点B的坐标为(x1,y1),直线l的斜率为k. 则直线l的方程为y=k(x+2). 于是A、B两点的坐标满足方程组 消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0. 由 ,得 .从而 . 所以 . 设线段AB的中点为M, 则M的坐标为 . 以下分两种情况: ①当k=0时,点B的坐标是(2,0), 线段AB的垂直平分线为y轴, 于是 . 由 ,得 . ②当k≠0时,线段AB的垂直平分线方程为 . 令x=0,解得 . 由 ,, = =, 整理得7k2=2.故 . 所以 . 综上,或 .
复制答案
考点分析:
相关试题推荐
在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点.
(1)证明:A1B1⊥C1D;
(2)当AM=manfen5.com 满分网时,求二面角M-DE-A的大小.

manfen5.com 满分网 查看答案
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
查看答案
已知命题P:函数manfen5.com 满分网在区间(a,2a+1)上是单调递增函数;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.
查看答案
如图,在长方形ABCD中,AB=manfen5.com 满分网,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为   
manfen5.com 满分网 查看答案
三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:
①异面直线SB与AC所成的角为90°; 
②直线SB⊥平面ABC; 
③面SBC⊥面SAC; 
④点C到平面SAB的距离是manfen5.com 满分网
其中正确结论的序号是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.