满分5 > 高中数学试题 >

已知函数,g(x)=x+lnx,其中a>0. (Ⅰ)若x=1是函数h(x)=f(...

已知函数manfen5.com 满分网,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;
(Ⅱ)是否存在正实数a,使对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,若存在,求出实数a的取值范围;若不存在,说明理由.
(1)利用函数极值点的导数等于0,且此点的左侧和右侧导数的符号相反,求得实数a的值. (2)问题等价于对任意的x1,x2∈[1,e]时,都有[f(x)]min≥[g(x)]max,分类讨论,利用导数的符号 判断函数的单调性,由单调性求出函数f(x)的最小值及g(x)]的最大值,根据它们之间的关系求出 实数a的取值范围. (1)【解析】 ∵,其定义域为(0,+∞),∴. ∵x=1是函数h(x)的极值点,∴h'(1)=0,即3-a2=0,∵a>0,∴. 经检验,当时,x=1是函数h(x)的极值点,∴. (2)【解析】 假设存在实数a,对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立, 等价于对任意的x1,x2∈[1,e]时,都有[f(x)]min≥[g(x)]max,当x∈[1,e]时,. ∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1. ∵,且x∈[1,e],a>0, ①当0<a<1且x∈[1,e]时,, ∴函数在[1,e]上是增函数.∴[f(x)]min=f(1)=1+a2. 由1+a2≥e+1,得  a≥,又0<a<1,∴a  不合题意. ②当1≤a≤e时, 若1≤x<a,则,若a<x≤e,则. ∴函数在[1,a)上是减函数,在(a,e]上是增函数. ∴[f(x)]min=f(a)=2a.2a≥e+1,得  a≥,1≤a≤e,∴≤a≤e. ③当a>e且x∈[1,e]时,, ∴函数在[1,e]上是减函数.∴. 由≥e+1,得  a≥,又a>e,∴a>e. 综上所述,存在正实数a的取值范围为 .
复制答案
考点分析:
相关试题推荐
已知圆C经过(-2,0),(2,0)两点,且圆心在直线y=x.
(1)求圆C的方程;
(2)过(-1,1)的直线l与圆C交于不同两点A,B,且满足manfen5.com 满分网(O为坐标原点)的点M也在圆C上,求直线l的方程.
查看答案
某化工厂打算投入一条新的生产线生产某种化工产品,但需要经过环保部门审批同意后方可投入生产.已知该生产线连续生产n个月的累积产量为manfen5.com 满分网吨,但如果月产量超过96吨,就会给周边环境造成污染,环保部门将责令停产一段时间,再进入下一个生产周期.
(Ⅰ)请你代表环保部门给该生产线拟定一个最长的生产周期;
(Ⅱ)按环保管理条例,该生产线每月需要缴纳a万元的环保费.已知这种化工产品每吨的售价为0.6万元,第n个月的生产成本为manfen5.com 满分网万元.当环保费用a在什么范围内时,该生产线在最长的生产周期内每月都有盈利?
查看答案
如图,在三棱柱BCD-B1C1D1与四棱锥A-BB1D1D的组合体中,已知BB1⊥平面BCD,四边形ABCD是平行四边形,∠ABC=120°,AB=manfen5.com 满分网,AD=3,BB1=1.
(1)设O是线段BD的中点,求证:C1O∥平面AB1D1
(2)求直线AB1与平面ADD1所成的角.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且manfen5.com 满分网
(1)求角A的大小;
(2)已知,a=manfen5.com 满分网,△ABC的面积S=manfen5.com 满分网,求b+c的值.
查看答案
已知manfen5.com 满分网,函数manfen5.com 满分网
(1)求函数的解析式及函数的最小正周期;
(2)求函数f(x)在[0,manfen5.com 满分网]上的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.